

Mechanical Property	Definition
Hardness	Resists being scratched or
	deformed
Elasticity	Returns to its original after
	the stress
Resilience	Resists shocks without
	breaking
Ductility	Can be stretched without
	breaking
Malleability	Can be flattened or bent
	without breaking
Stiffness	Keeps their shape when
	subjected to various
	constraints

MATERIALS

> Wood

Wood is a material obtained by harvesting and processing trees.

Modified Wood: Pieces of wood (shavings etc) mixed with glue or other substances.

> Metals

Metals are naturally occurring; they are usually shiny and good conductors of electricity and heat.

Alloy: The result of mixing a metal with one or more metallic or non-metallic substances.

Certain metals are valued for their ductility and malleability.

Plastics

Plastic is a manufactured material made of polymers. Most plastics come from petroleum or gas. Plastics can be easily moulded and can be shaped into anything. Once they are moulded, plastics keep their new shape.

Different types of woods, metals and plastics have different mechanical properties.

For example:

	Steel (an alloy)	Oak (wood)	Copper (metal)
Hardness	V	V	
Elasticity		V	
Resilience	v	√ (with	
		adequate	
		moisture)	
Ductility			V
Malleability	V	√ (when heated)	V
Stiffness			
Tensile strength	V	V	

Technical objects are made up of many different parts. These parts often work together and each has a specific function.

guides

Guiding is the mechanical function performed by any component that controls the motion of one or more moving parts.

LINKS

A link connects, fastens, or puts together two or more components of a technical object.

guding

LINKS

There are two types of guides:

a) Translational G	uide: allows parts to slide up and down
•	<u>+</u>
(or left to right)	ग

b) Rotational Guide: allows part to move (turn) around an

axis

Example: The bolt is guided by the _____ What type of guide is this?

Types of Links				
1	Direct Link	Two parts hold together without a		
		linking component		
	Indirect Link	The parts require a linking		
		component to hold them together.		
2 Rigid Link 2 Flexible Link	Pigid Link	The linking component or surface is		
		rigid (doesn't move).		
	The linking component or surface			
		can be deformed.		
Removable Link Non- removable	Pomovablo	The linked parts can be removed		
	Link	without damaging their surface or		
	LIIIK	the linking component.		
	Non-	It damages the linked parts when		
	removable	separating them.		
4		Prevents the linked parts from		
	Complete	moving on their own (they can't		
	Link	move independently from each		
		other).		
	Partial Link	At least one part can move		
		independently of the other parts.		